Your retail company wants to predict customer churn using historical purchase data stored in BigQuery. The dataset includes customer demographics, purchase history, and a label indicating whether the customer churned or not. You want to build a machine learning model to identify customers at risk of churning. You need to create and train a logistic regression model for predicting customer churn, using the customer_data table with the churned column as the target label. Which BigQuery ML query should you use?
You work for a healthcare company. You have a daily ETL pipeline that extracts patient data from a legacy system, transforms it, and loads it into BigQuery for analysis. The pipeline currently runs manually using a shell script. You want to automate this process and add monitoring to ensure pipeline observability and troubleshooting insights. You want one centralized solution, using open - source tooling, without rewriting the ETL code. What should you do?
You manage data at an ecommerce company. You have a Dataflow pipeline that processes order data from Pub/Sub, enriches the data with product information from Bigtable, and writes the processed data to BigQuery for analysis. The pipeline runs continuously and processes thousands of orders every minute. You need to monitor the pipeline's performance and be alerted if errors occur. What should you do?
Your team uses Google Sheets to track budget data that is updated daily. The team wants to compare budget data against actual cost data, which is stored in a BigQuery table. You need to create a solution that calculates the difference between each day's budget and actual costs. You want to ensure that your team has access to daily -updated results in Google Sheets. What should you do?