A company launched a service that produces millions of messages every day and uses Amazon Kinesis Data Streams as the streaming service.The company uses the Kinesis SDK to write data to Kinesis Data Streams. A few months after launch, a data analyst found that write performance is significantly reduced. The data analyst investigated the metrics and determined that Kinesis is throttling the write requests. The data analyst wants to address this issue without significant changes to the architecture.Which actions should the data analyst take to resolve this issue? (Choose two.)
A smart home automation company must efficiently ingest and process messages from various connected devices and sensors. The majority of these messages are comprised of a large number of small files. These messages are ingested using Amazon Kinesis Data Streams and sent to Amazon S3 using a Kinesis data stream consumer application. The Amazon S3 message data is then passed through a processing pipeline built on Amazon EMR running scheduled PySpark jobs.The data platform team manages data processing and is concerned about the efficiency and cost of downstream data processing. They want to continue to usePySpark.Which solution improves the efficiency of the data processing jobs and is well architected?
A large financial company is running its ETL process. Part of this process is to move data from Amazon S3 into an Amazon Redshift cluster. The company wants to use the most cost-efficient method to load the dataset into Amazon Redshift.Which combination of steps would meet these requirements? (Choose two.)
A university intends to use Amazon Kinesis Data Firehose to collect JSON-formatted batches of water quality readings in Amazon S3. The readings are from 50 sensors scattered across a local lake. Students will query the stored data using Amazon Athena to observe changes in a captured metric over time, such as water temperature or acidity. Interest has grown in the study, prompting the university to reconsider how data will be stored.Which data format and partitioning choices will MOST significantly reduce costs? (Choose two.)
A healthcare company uses AWS data and analytics tools to collect, ingest, and store electronic health record (EHR) data about its patients. The raw EHR data is stored in Amazon S3 in JSON format partitioned by hour, day, and year and is updated every hour. The company wants to maintain the data catalog and metadata in an AWS Glue Data Catalog to be able to access the data using Amazon Athena or Amazon Redshift Spectrum for analytics.When defining tables in the Data Catalog, the company has the following requirements:✑ Choose the catalog table name and do not rely on the catalog table naming algorithm.✑ Keep the table updated with new partitions loaded in the respective S3 bucket prefixes.Which solution meets these requirements with minimal effort?
A financial services company needs to aggregate daily stock trade data from the exchanges into a data store. The company requires that data be streamed directly into the data store, but also occasionally allows data to be modified using SQL. The solution should integrate complex, analytic queries running with minimal latency. The solution must provide a business intelligence dashboard that enables viewing of the top contributors to anomalies in stock prices.Which solution meets the company's requirements?