A Generative Al Engineer is creating an LLM-based application. The documents for its retriever have been chunked to a maximum of 512 tokens each. The Generative Al Engineer knows that cost and latency are more important than quality for this application. They have several context length levels to choose from.Which will fulfill their need?
A small and cost-conscious startup in the cancer research field wants to build a RAG application using Foundation Model APIs.Which strategy would allow the startup to build a good-quality RAG application while being cost-conscious and able to cater to customer needs?
A Generative Al Engineer is responsible for developing a chatbot to enable their company’s internal HelpDesk Call Center team to more quickly find related tickets and provide resolution. While creating the GenAI application work breakdown tasks for this project, they realize they need to start planning which data sources (either Unity Catalog volume or Delta table) they could choose for this application. They have collected several candidate data sources for consideration: call_rep_history: a Delta table with primary keys representative_id, call_id. This table is maintained to calculate representatives’ call resolution from fields call_duration and call start_time. transcript Volume: a Unity Catalog Volume of all recordings as a *.wav files, but also a text transcript as *.txt files. call_cust_history: a Delta table with primary keys customer_id, cal1_id. This table is maintained to calculate how much internal customers use the HelpDesk to make sure that the charge back model is consistent with actual service use. call_detail: a Delta table that includes a snapshot of all call details updated hourly. It includes root_cause and resolution fields, but those fields may be empty for calls that are still active. maintenance_schedule – a Delta table that includes a listing of both HelpDesk application outages as well as planned upcoming maintenance downtimes.They need sources that could add context to best identify ticket root cause and resolution.Which TWO sources do that? (Choose two.)
What is the most suitable library for building a multi-step LLM-based workflow?
When developing an LLM application, it’s crucial to ensure that the data used for training the model complies with licensing requirements to avoid legal risks.Which action is NOT appropriate to avoid legal risks?
A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.Which change could the Generative Al Engineer perform to mitigate this issue?