Your organization stores highly personal data in BigQuery and needs to comply with strict data privacy regulations. You need to ensure that sensitive data values are rendered unreadable whenever an employee leaves the organization. What should you do?
You used BigQuery ML to build a customer purchase propensity model six months ago. You want to compare the current serving data with the historical serving data to determine whether you need to retrain the model. What should you do?
Your company uses Looker to visualize and analyze sales data. You need to create a dashboard that displays sales metrics, such as sales by region, product category, and time period. Each metric relies on its own set of attributes distributed across several tables. You need to provide users the ability to filter the data by specific sales representatives and view individual transactions. You want to follow the Google-recommended approach. What should you do?
Your company’s ecommerce website collects product reviews from customers. The reviews are loaded as CSV files daily to a Cloud Storage bucket. The reviews are in multiple languages and need to be translated to Spanish. You need to configure a pipeline that is serverless, efficient, and requires minimal maintenance. What should you do?
You have a Dataproc cluster that performs batch processing on data stored in Cloud Storage. You need to schedule a daily Spark job to generate a report that will be emailed to stakeholders. You need a fully-managed solution that is easy to implement and minimizes complexity. What should you do?
Your organization has highly sensitive data that gets updated once a day and is stored across multiple datasets in BigQuery. You need to provide a new data analyst access to query specific data in BigQuery while preventing access to sensitive data. What should you do?